1,025 research outputs found

    Representing the Australian Heat Low in a GCM Using Different Surface and Cloud Schemes

    Get PDF
    The high insolation during the Southern Hemisphere summer leads to the development of a heat low over north-west Australia, which is a significant feature of the monsoon circulation. It is therefore important that General Circulation Models (GCMs) are able to represent this feature well in order to adequately represent the Australian Monsoon. Given that there are many different configurations of GCMs used globally (such as those used as part of the Coupled Model Intercomparison Project), it is difficult to assess the underlying causes of the differences in circulation between such GCMs. In order to address this problem, the work presented here makes use of three different configurations of the Australian Community Climate and Earth System Simulator (ACCESS). The configurations incorporate changes to the surface parameterization, cloud parameterization, and both together (surface and cloud) while keeping all other parameterized processes unchanged. The work finds that the surface scheme has a larger impact on the heat low than the cloud scheme, which is caused by differences in the soil thermal inertia. This study also finds that the differences in the circulation caused by changing the cloud and surface schemes together are the linear sum of the individual perturbations (i.e., no nonlinear interaction)

    Composite absorbing potentials

    Full text link
    The multiple scattering interferences due to the addition of several contiguous potential units are used to construct composite absorbing potentials that absorb at an arbitrary set of incident momenta or for a broad momentum interval.Comment: 9 pages, Revtex, 2 postscript figures. Accepted in Phys. Rev. Let

    A Banach space determined by the Weil height

    Full text link
    The absolute logarithmic Weil height is well defined on the group of units of the algebraic closure of the rational numbers, modulo roots of unity, and induces a metric topology on this group. We show that the completion of this metric space is a Banach space over the field of real numbers. We further show that this Banach space is isometrically isomorphic to a co-dimension one subspace of L1 of a certain totally disconnected, locally compact space, equipped with a certain measure satisfying an invariance property with respect to the absolute Galois group

    High-fidelity readout of trapped-ion qubits

    Full text link
    We demonstrate single-shot qubit readout with fidelity sufficient for fault-tolerant quantum computation, for two types of qubit stored in single trapped calcium ions. For an optical qubit stored in the (4S_1/2, 3D_5/2) levels of 40Ca+ we achieve 99.991(1)% average readout fidelity in one million trials, using time-resolved photon counting. An adaptive measurement technique allows 99.99% fidelity to be reached in 145us average detection time. For a hyperfine qubit stored in the long-lived 4S_1/2 (F=3, F=4) sub-levels of 43Ca+ we propose and implement a simple and robust optical pumping scheme to transfer the hyperfine qubit to the optical qubit, capable of a theoretical fidelity 99.95% in 10us. Experimentally we achieve 99.77(3)% net readout fidelity, inferring at least 99.87(4)% fidelity for the transfer operation.Comment: 4 pages, 3 figures; improved readout fidelity (numerical results changed

    Loading of a surface-electrode ion trap from a remote, precooled source

    Full text link
    We demonstrate loading of ions into a surface-electrode trap (SET) from a remote, laser-cooled source of neutral atoms. We first cool and load \sim 10610^6 neutral 88^{88}Sr atoms into a magneto-optical trap from an oven that has no line of sight with the SET. The cold atoms are then pushed with a resonant laser into the trap region where they are subsequently photoionized and trapped in an SET operated at a cryogenic temperature of 4.6 K. We present studies of the loading process and show that our technique achieves ion loading into a shallow (15 meV depth) trap at rates as high as 125 ions/s while drastically reducing the amount of metal deposition on the trap surface as compared with direct loading from a hot vapor. Furthermore, we note that due to multiple stages of isotopic filtering in our loading process, this technique has the potential for enhanced isotopic selectivity over other loading methods. Rapid loading from a clean, isotopically pure, and precooled source may enable scalable quantum information processing with trapped ions in large, low-depth surface trap arrays that are not amenable to loading from a hot atomic beam

    A measurement-based approach to quantum arrival times

    Get PDF
    For a quantum-mechanically spread-out particle we investigate a method for determining its arrival time at a specific location. The procedure is based on the emission of a first photon from a two-level system moving into a laser-illuminated region. The resulting temporal distribution is explicitly calculated for the one-dimensional case and compared with axiomatically proposed expressions. As a main result we show that by means of a deconvolution one obtains the well known quantum mechanical probability flux of the particle at the location as a limiting distribution.Comment: 11 pages, 4 figures, submitted to Phys. Rev.

    Experimental recovery of a qubit from partial collapse

    Full text link
    We describe and implement a method to restore the state of a single qubit, in principle perfectly, after it has partially collapsed. The method resembles the classical Hahn spin-echo, but works on a wider class of relaxation processes, in which the quantum state partially leaves the computational Hilbert space. It is not guaranteed to work every time, but successful outcomes are heralded. We demonstrate using a single trapped ion better performance from this recovery method than can be obtained employing projection and post-selection alone. The demonstration features a novel qubit implementation that permits both partial collapse and coherent manipulations with high fidelity.Comment: 5 pages, 3 figure
    corecore